艾瑞:2017年中国商业智能行业研究报告

商业智能(BI,Business Intelligence)概念的提出可追溯至1958年,通常将其视为把企业中现有数据转化为知识,帮助企业做出明智的业务经营决策的工具。过去的商业智能不能给出决策方案,也不能自动处理企业运行过程中遇到的问题。借助于人工智能与其他相关学科的技术进步,现代商业智能已能在特定场景中实现商业经营的智能化与自动化。因此,本报告聚焦于将人工智能技术用于商业智能决策,试图对人工智能在商业落地的真实现状进行说明,凸显AI技术(不包括智能语音、计算机视觉等感知智能)在现阶段应用的价值。

区别于能够实现海量数据的管理、简单分析与可视化的传。统商业智能,艾瑞的此份商业智能报告将聚焦于人工智能技术如何用于商业智能决策,实现商业经营的智能化与自动化。

报告核心观点
• 中国企业精细化运营的需求正在爆发
• 商业智能,帮助企业实现数据驱动认知到数据驱动决策的转变
• 商业智能主要应用于金融、电商、物流、出行等领域
• 中国AI论文成果达到国际一线水平
• 技术方面,商业智能的未来将从强调单一技术,到各学科、分支、算法等融会贯通
• 技术以外,企业、技术供应商对场景的理解是产业升级的关键
• 商业智能的落地是一项系统工程,企业的工程实践能力有待增强

 

 

 

 


大数据对商业智能的贡献

 

互联网、移动互联网高速发展,海量、高维度且可实时接入更新的数据随之而来,为机器学习等前沿技术在各领域中的探索及落地提供可能,进一步拓展了被服务人群且显著提升服务质量。另一面,产业缺乏通用标准约束,数据在采集及流转过程中污染程度不一,数据加密不规范引致的数据泄露时有发生,数据孤岛亦成为企业业务发展的掣肘(如金融方面,企业多为基于自身平台积累的独有数据做征信,评分适用范围将大大受限),通用标准的建立需要政府及产业界的共同努力。

 


数据化智能决策

 

智能技术的运用一方面将拓展大数据的应用场景,从帮助业务人员认知到实现企业最优决策,另一方面,自然语言处理的进步也正在解决人机交互的部分问题,自然语言查询、自然语言生成都将进一步释放商业智能的效率和价值。

 


认知智能在商业场景中的应用

 

类比人类智能,人工智能可分为赋予机器语音、图像等感知能力的感知智能和赋予机器思考能力的认知、决策智能。认知能提升感知(如对语义的理解判断将提升机器的语音识别率),感知也会辅助决策(如智慧商超中机器视觉对客流属性、消费行为的观察、记录可辅助商超做出营销决策),本报告聚焦于认知智能在商业场景中的应用情况。

 


2017年中美商业智能环境对比

 

过去的几十年中,中国科技智能环境不如西方几乎成了很多人的刻板印象,但在如今的商业智能领域,我国从“中国制造”到“中国智造”,从奋起直追到弯道超车,已进入商业智能领域第一方阵,成为发展最快的国家之一。总的来说,由于中美文化差异、人口差别、工作强度不同等因素,相比美国,中国将技术落地的加速度更快,新兴商业模式拓展力强,但业务的发展仍缺乏全面性与标准化。目前,中国通过单点突破弯道超车,并开始重视精细化运营,由局部最优逐渐向全局最优靠拢。

 

 

 

 


2017年中国商业智能产业链

 

本报告侧重于智能技术在商业场景中的应用,即产业链的中游和下游。关于产业链的上游,传统IT厂商和云服务厂商可为技术、产品及服务提供者赋予计算、存储等基础设施支持, ERP、CRM等信息系统可帮助企业有效记录其资源及业务数据,数据整合者的第三方数据则可丰富智能分析的数据维度。

 


2017年中国商业智能产业图谱

 


2012-2016年中国商业智能行业融资轮次

 

商业智能应用场景众多,包括营销、金融、交通等领域,各领域涉及企业众多,行业集中度较低,融资方面,2012-2016年最为火热,其中,2015年融资次数达到31次,同时有两家新三板挂牌企业,是2012-2016年中融资次数最多的一年;从融资轮次来看,大部分融资尚处于早期的天使轮、A轮阶段;另外,从企业所涉领域来看,服务于金融领域的企业最受资本市场青睐。

 

 


商业智能核心技术剖析,了解技术是发展技术的前提

人工智能正在重塑科学、技术、商业、政治以及战争,而大众对技术的认知程度和该技术的重要性相比显得远远不够。即使只有工程师和机修工有必要知道汽车发动机如何运作,每位司机也都必须明白转动方向盘会改变汽车的方向、踩刹车会让车停下。另外,当今人工智能的各个分支其实在五十年前就已有相关基础,当时的一些科学家认为,人工智能的所有问题都将在十年内解决。但事实是直到今天,很多问题仍悬而未决并难以解决。过高的预期引致不当的失望,人工智能历史上的两次冬天无疑阻碍了技术、产业发展的步伐,并让踏实做事的人受到伤害。因此,我们有必要对商业智能技术的概念模型、发展现状与应用前景进行客观认知,了解它的能力与边界。

 


机器学习的过程

 

将数据输入计算机,一般算法会利用数据进行计算然后输出结果,机器学习的算法则大为不同,输入的是数据和想要的结果,输出的则为算法模型,即把数据转换成结果的算法模型。通过机器学习,计算机能够自己生成模型,进而提供相应的判断,实现某种人工智能。工业革命使手工业自动化,而机器学习则使自动化本身自动化。

 


机器学习技术发展史

 

在《终极算法》一书中,多明戈斯将机器学习分为五大学派:符号学派、联结学派、进化学派、贝叶斯学派、类推学派,引起热议。但发展至今,机器学习各学派彼此相遇、交融,已难以做清晰划分,另一方面,工业实践中问题的解决往往依赖于具体场景下对多种算法的综合利用,学派归属则无足轻重。尽管机器学习在20世纪80年代才成为一个独立的学科门类,进而在人工智能问题中大施拳脚,但在人工智能进入属于机器学习的鼎盛时期以前,在人工智能诞生之初的推理期、知识期即有机器学习的用武之地。因此,本报告仅结合人工智能不同发展阶段的主流思想特点,对当时机器学习的主要方法做以下图介绍。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


商业智能的挑战与未来

 


从强调单一技术,到各领域融会贯通

 

在大数据的背景下,商业场景中任一问题的解决,往往是多学科思想的交融,而非对单一方法的依赖。在计算机科学、人工智能、运筹学、博弈论等诸多学科领域的综合与交叉中,一个个贴合实际业务场景的解决方案应运而生,使得商业智能切实优化企业决策方式,助力业务增长。融合也表现在人工智能的各分支上,如关于语义网的研究,自然语言理解、机器学习、人机交互都很重要。最后,任何一种学习算法都有自己的优势和局限,所谓的解决一切问题的终极算法,很有可能是对现有算法的兼容并包。当然,如何让各算法相遇相融并在不大幅降低效率的前提下提升通用性,仍是一个非常复杂但值得探索的难题。

 


技术以外,对场景的理解是产业升级的关键

 

在人工智能成为产业界、学术圈、投资人以及媒体关注的焦点以来,大众对深度学习等技术尤为关注。但在工业实践中,对具体业务场景的理解与对实际问题的界定,与采用何种模型、算法同等重要,前者在很大程度上决定了后者是否能够有效降低企业运营成本或者帮助相关业务增加收入,这是技术能够落地、产业得以升级的关键。

在AAAI2017中,Uber人工智能实验室主任Gary Marcus即表示当前飞速发展的深度学习等技术可能只是在不断逼近通用人工智能的一个局部最优点,而这样的逼近方式可能让我们错过那些真正更好地实现通用人工智能的方法。因此,在运用技术解决某个问题之前,绝不应先入为主地认定要是用某个具体的机器学习算法,而应首先对业务场景加以分析,抓住核心问题要素,这是做出最优技术选择的前提。

 


商业智能的落地是一项系统工程

 

商业智能业务应用的落地需要建立在完善的数据整合、管理之上,再由相应的算法、模型基于高效的计算框架将数据转化为可视化的业务规律,进一步驱动或直接生成企业决策,因此商业智能是一项系统工程,算法设计、架构搭建、系统配合、流程控制、质量监督、危机处理等缺一不可,项目工程经验非常重要。

另一方面,类比国际顶级SaaS企业Salesforce,其产品通用功能大概只占50%,产品背后依然有大量供应商及自身服务团队结合客户差异化的场景做定制服务,因此尚处早期的商业智能领域,在很长一段时期内,服务方式仍将以定制化的解决方案为主(尤其面对大企业的时候),以SaaS等标准化的产品为辅,并在部分场景中以PaaS服务接入客户ERP、CRM等信息系统,快速、低成本地将商业智能赋能于企业。

推荐文章

沪公网安备 31010702002009号